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Problem Statement

Recommender Systems is a rapidly growing area
(ACM RecSys conference series since 2007)

Matrix Factorisation techniques are seems to be
an industry standard (SVD, NMF, PLSA etc.)

What about Boolean Matrix Factorisation or/and
FCA?

Hence why not to develop FCA-based BMF
technique, evaluate it, and compare with the
state-of-the-art techniques?
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Basic MF Techniques. SVD

.Singular Value Decomposition

> |
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0
A e R™"(m >n)
U e R™Mand V € R™ ™ are orthogonal matrices

) = dia..g(al. c . :O'.”). where o1 > 09> ...2>0.
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Basic MF Techniques. NMF
* Non-negative Matrix Factorisation
V~WH
VeR"™™, V;>0;
W e RV W;; > 0;

H € kam Hx,;j > ().
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Basic MF Techniques. NMF
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Basic MF Techniques. NMF

e Boolean Matrix Factorisation

[ = PoQ),
(Po@)ij = \k/F%z - Qij,
=1
[ €{0, 1}y,
P e {0, 1},

Q E {03 1}k><’m.
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Formal Concept Analysis
[Wille, 1982, Ganter & Wille, 1999]

Definition 1. Formal Context is a triple (G, M, | ), where G is a
set of (formal) objects, M is a set of (formal) attributes, and
| < G xM isthe incidence relation which shows that object
g € G posseses an attribute m € M.

Example. Books recommender

Romeo & Juliet | The Puppets Ubik Ivanhoe
Master

: I
X X

David X X X

Mike




Formal Concept Analysis

Definition 2. Derivation operators (defining Galois connection)

Al:={meM | gimforallg € A} is the set of attributes common to all
objectsin A

B':={g e G | gimforallm € B} is the set of objects that have all
attributes from B

Example

{Kate, Mike} = {RJ}
{Ubik}' = {Mike, Alex, David}
{RI,PM}' = {}G

{} ;=M




Formal Concept Analysis

Definition 3. (A, B) is a formal concept of (G, M, ) iff
AcCcG BcM, Al=B,and B'=A.

A is the extent and B is the intent of the concept (A, B).

B (GM,I) is a set of all concepts of the context (G, M, )

 Apair ({Kate, Mike},{R&J}) is a

formal concept

 ({Alex, David},{Ubik}) doesn‘t
form a formal concept,

because
{Ubik}'#{Alex, David}

* ({Alex, David} {PM, Ubik}) is a

formal concept



FCA and Graphs

Kate

Mike

David

O ®

Formal Context Bipartite graph

Formal Concept Biclique
(maximal rectangle)




FCA & Recommender Systems

Collaborative Recommending using Formal
Concept Analysis (du Boucher-Ryan & Bridge,
2006)

Concept-based Recommendations for Internet
Advertisement (Ignatov & Kuznetsov, 2008)

FCA-based Recommender Models and Data
Analysis for Crowdsourcing Platform Witology
(lgnatov et al., 2014)



FCA-based BMF
* Belohlavek & Vyhodil, 2010

Matrix I can be considered a matrix of binary relations between set X of
objects (users), and a set Y of attributes (items that users have evaluated). We
assume that xzly iff the user z evaluated object y. The triple (X,Y,I) clearly
forms a formal context.

Consider a set F C B(X,Y,I), a subset of all formal concepts of context
(X.,Y,I), and introduce matrices Pr and Qr :

L e Ay _JLie B,
(Py)ie_{ﬂ,iéﬂlg, (QF)IJ_{U_}'éBE

where (A;, B;) is a formal concept from F.



FCA-based BMF
* Belohlavek & Vyhodil, 2010

Theorem 1. (Universality of formal concepts as factors). For every I there is

F CB(X,Y,I), such that I = Pro Q~r.

Theorem 2. (Optimality of formal concepts as factors). Let I = Po Q for n x k
and k x m binary matrices P and (). Then there exists a F C B(X,Y.I)
of formal concepts of I such that |F| < k and for the n x |F| and |F| x m
binary matrices Pr and Qr we have | = Pro Qr.
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General Scheme of Experiments

Matrix of ratings

[BMF

w\‘
—

PLS kNN

SVD

Recommendations




kNN approach

e Adomavicus & Tuzhilin, 2005
* Predicted rating of user c for item s

res =Kk E S'EIT'H(E'_’#..{:} X Tt s

e

where k serves as a normalizing factor and selected as k =1/ > sim(e, ).
c'eC

* sim(c)c) is similarity between users c'and c,
e.g. cosine-based or Pearson correlation
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Dataset

* Movielens dataset:
— 943 users,
— 1682 movies,
— every user have rated at least 20 movies,
— 100000 ratings,
— training set 80000 ratings,
— test set 20000 ratings.



Experiments
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Experiments

* MAE for SVD and BMF at 80% coverage level

Number of neighbors| 1 5 10 20 30 50 60
M AFEsv pso 2,4604| 1.4355 | 1.1479 | 0.9750 | 0.9148 | 0.8652 |0.8534
MAFEBMFsg0 2.48131.3960(1.1215/0.9624|0.9093|0.8650| 0.8552

MAFE 2.3091 | 1.3185 | 1.0744 | 0.9350 | 0.8864 | 0.8509 | 0.8410

* Number of factors for SVD and BMF at
different coverage level

pYo

100%
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Precision

Experiments

Comparison of kNN- approach and BMF-based approaches by
Precision and Recall
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Experiments

* Scaling influence on the recommendations
quality for BMF in terms of MAE

I,; =11 R;; >0, else I;; = 0 (user i rates item j).
Liij=11 R;; > 1, else I;; = 0.

Ii; =11t R;; > 2, else I;; =0.
L =11 R;; > 3, else I;; = 0.




Experiments

* MAE dependence on scaling and number of

nearest neighbors for 80% coverage.
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Experiments

MAE dependence on data filtration algorithm and the number
of nearest neighbors.
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Experiments

e Speed up of PLSA convergence
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Conclusion

* BMF-based RA is similar to state-of-the-art
techniques in terms of MAE and demonstrates

good Precision and Recall

* Probably low scalability is the main drawback
of the approach
 BMF: O(k|G||M|3) versus SVD: O(|G| M |2+|M]|3)



Future Prospects

BMF-based RS in Triadic Case (e.g.,
folksonomy data)

BMF-based RS for Graded and Ordinal Data

BMF-based RS for simultaneous factorisation
of user-features, user-items, and items-
features matrices

BMF and Least Square based imputation
techniques

Scalability Issues



